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Fourier transform infrared spectroscopy (FTIR) and z-Nose were used as screening tools for the
identification and classification of honey from different floral sources. Honey samples were scanned
using microattenuated total reflectance spectroscopy in the region of 600-4000 cm-1. Spectral data
were analyzed by principal component analysis, canonical variate analysis, and artificial neural network
for classification of the different honey samples from a range of floral sources. Classification accuracy
near 100% was achieved for clover (South Dakota), buckwheat (Missouri), basswood (New York),
wildflower (Pennsylvania), orange blossom (California), carrot (Louisiana), and alfalfa (California)
honey. The same honey samples were also analyzed using a surface acoustic wave based z-Nose
technology via a chromatogram and a spectral approach, corrected for time shift and baseline shifts.
On the basis of the volatile components of honey, the seven different floral honeys previously
mentioned were successfully discriminated using the z-Nose approach. Classification models for FTIR
and z-Nose were successfully validated (near 100% correct classification) using 20 samples of
unknown honey from various floral sources. The developed FTIR and z-Nose methods were able to
detect the floral origin of the seven different honey samples within 2-3 min based on the developed
calibrations.
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INTRODUCTION

Components of honey comprise carbohydrates, water, traces
of organic acids, enzymes, amino acids, pigments, pollens, and
wax in various proportions depending upon the floral and
geographical origin and the harvest season. The average
composition from a survey of about 490 samples of honey from
the different regions in the United States presented inTable 1
indicates that besides glucose and fructose, there are about 25
oligosaccharides present in minor (<2%) to trace (<0.1%)
quantities with various concentrations depending on the variety
and the source of the nectar. Sucrose present in honey is∼1-
3%; however, this level can increase if the bees are overfed
with sugar (sucrose) during the spring season (3).

Various analytical methods such as GC-MS and HPLC are
available to determine the floral source of honey; however, the
experimental method to determine this could be involved. Floral
identification of six of the most commonly used honeys was
investigated, and their chemical characteristics were reported
and compared with the Saudi Arabian standards via microscopic
examination (4). Phenolic compounds of heather, lavender,
acacia, rape, sunflower, rosemary, citrus, rhododendron, thyme,
chestnut tree, and calluna honey samples were examined by

capillary zone electrophoresis, and correlations between the
phenolic profile and the botanical origin of the honey were
established (5). The physicochemical properties of the honeys
such as color, moisture, pH and acidity, lugol test, diastase index,
reducing and nonreducing sugars contents, and hydroxymeth-
ylfurfural contents were also determined using a colorimetric
method (6). GC-MS could also be used as an effective method
for honey authentification studies based on aroma profiling (7).
Near- and mid-infrared and spectroscopies have already shown
good promise as powerful tools for the assessment of sugar
contents in various food and agricultural products (8-10).

It has been suggested that the ratios between the concentra-
tions of amino acids could be used to determine the geographi-
cal/floral source of 98 honey samples (11,12). Examination of
the ratio between the acids and amino acids reveals that
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Table 1. Average Composition of Honey

component av SD range

moisture (%) 17.2 1.46 13.4−22.9
fructose (%) 38.19 2.07 27.25−44.26
glucose (%) 31.28 3.03 22.03−40.73
sucrose (%) 1.31 0.95 0.25−7.57
maltose (%) 7.31 2.09 2.74−15.98
higher sugar (%) 1.50 1.03 0.13−8.49
lactone, mequiv/kg 0.335 0.13 0.0−0.95
ash (%) 0.169 0.15 0.02−1.028
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variations in the ratios between the same types of honey from
different geographical locations exist; however, the variation
between honeys from different floral sources was much greater.
Honey from different botanical sources (acacia, citrus, chestnut,
rhododendron, rosemary, and lime) have been analyzed by gas
chromatography and the data evaluated statistically for possible
development of amino acid profiling for classification (13).
Chromatography has been used to determine the total amount
of proline, leucine, and phenylalanine and their enantiomeric
ratios in different honey samples. Significant amounts of
D-leucine andD-phenylalanine have been found in honeys from
different botanical and geographical origins (14).

The functional properties of honey very much depend on the
volatile and semivolatile organic compounds, which vary on
the basis of the floral origin and the method of handling. An
elucidation of the origin of aroma compounds should lead to a
better understanding of factors causing flavor differences
between honeys. Traditional analytical techniques for quality
evaluation include HPLC, GC with headspace sampling, and
GC-MS analysis with solid-phase microextraction (15, 16).
Other methods such as the mass spectrometry based e-nose (MS
E-nose) have also been introduced as fast and sensitive
techniques, but they are expensive (17). More rapid and simpler
methods, however, are being pursued as attractive alternatives
primarily because of their potential in reducing the analysis cost
and time (18-21).

Limited availability and the increased price of honey have
provided major incentives for falsification with other carbohy-
drates that could mimic the constituents of the authenticated
product. Saccharides can be determined by a number of different
methods based on the use of their physical and chemical
properties (22,23). Fourier transform infrared (FTIR) spectro-
scopic methods have been shown to detect the presence of beet
invert, cane invert, and corn syrup in honey (24-29).

Arboleda and Loppnow have applied Raman spectroscopy
to characterize a mixture of carbohydrates present in unknown
sugar samples (30). FT-Raman spectra of several commercial
samples of honey from different U.S. states showed that the
relative intensities of the vibrational bands in the C-H stretch
region of the FT-Raman spectra are sensitive to the observed
physical states of the specimen (31). Several vibrational bands
in the region between 500 and 1800 cm-1 could also be used
as indicators of the two major components, fructose and glucose.
The near-infrared spectroscopy has also been used for composi-
tion assessment (32). More recently, artificial neural networks
(ANN) have been applied for food classification and authenticity
evaluation (33).

The most recent study on the potential of a surface acoustic
wave based sensor (34), the z-Nose, showed that complementary
information related to flavor compounds could also be obtained
rapidly and accurately. Hence, if a sensor fusion approach could
be undertaken, where information on the volatile components
obtained from z-Nose and the nonvolatile components from
FTIR could be integrated, a robust protocol could be developed
for honey quality analysis. The main objective of the proposed
work was to evaluate the potential of FTIR spectroscopy and
the GC-based z-Nose technology with relevant normalization
algorithms in conjunction with multivariate statistics and ANN
analysis for the classification of honeys based on their floral
origin.

MATERIALS AND METHOD

Honey Samples.Clover [South Dakota (SD)], buckwheat [Missouri
(MO)], basswood [New York (NY)], wildflower [Pennsylvania (PA)],
orange blossom [California (CA)], carrot [Louisiana (LA)], and alfalfa

[California (CA)] honeys were obtained from the National Honey Board
(Longmont, CO) directly from the beekeepers (Table 2). Fifty samples
from each floral honey were used for calibration; therefore, the
calibration data set comprised spectra from 350 samples and the
validation data set consisted of data from 20 different samples (Table
4) for each floral source (the total number of spectra in the validation
set is 140).

FTIR Spectroscopy Experiment.FTIR measurements were carried
out using a Bio-Rad 3000 Excalibur spectrometer with a microattenu-
ated total reflectance spectroscopy (m-ATR) sampling accessory (Pike
Technologies, Madison, WI). The spectrometer was equipped with a
deuterated triglycine sulfate (DTGS) detector, operating at 4 cm-1

resolution and 0.32 cm/s mirror velocity. Two hundred and fifty-six
interferograms were co-added before Fourier transformation. The
instrument was allowed to purge for 5 min with nitrogen gas (grade1)
prior to acquisition of the spectra to minimize the spectral noise due to
atmospheric carbon dioxide and water vapor. The sample station was
equipped with an overhead m-ATR accessory that contains transfer
optics, through which infrared radiation can be directed to a detachable
ATR crystal. The m-ATR cell used as a sampling accessory has a single-
reflection horizontal ATR (HATR) crystal (1.5 mm in diameter) made
of zinc selenide (ZnSe) with a refractive index of 2.34 and a depth of
penetration of 1.46µm for small sample analysis. This accessory
requires smaller sample volumes compared to the horizontal ATR;
however, because of the single-bounce acquisition, the spectral clarity
is not expected to be as high as with the multiple-bounce ATR crystal.

The reference spectrum was first recorded using a blank m-ATR
cell. Single-beam spectra of all samples were obtained and rationed
against the background spectrum of air to present the spectra in
absorbance units. After every measurement, the m-ATR crystal was
thoroughly washed with distilled water and dried. The cleaned crystal
was examined by repeated blank measurement to ensure that no sample
residue from the previous sample was retained on the crystal surface.
All experiments were done in triplicate.

z-Nose Experiment.All z-Nose experiments were carried out using
the model 7100/4100 vapor analysis system from Electronic Sensor
Technology (Newbury Park, CA). The z-Nose operates at the speed of
an electronic nose while delivering the precision and accuracy of a
GC. The z-Nose consists of a sensor head, a support chassis, and a
system controller housed within a small carrying case. The sensor head
contains the hardware necessary to separate and detect the compounds
in the analyte. The support chassis includes a small helium gas tank,
power supply, and electronics to run the system using appropriate
control systems. The analyzer is based on a single, uncoated quartz

Table 2. Classification Groups Based on Floral Origin

floral source of honey group floral source of honey group

clover (SD) 1 orange blossom (CA) 5
buckwheat (MO) 2 carrot (LA) 6
basswood (NY) 3 alfalfa (CA) 7
wildflower (PA) 4

Table 3. Vibrational Modes in the FTIR Spectra of Honey

wavenumber
(cm-1) vibrational group vibrational mode

927 CsH (carbohydrates) bending
991 CsO (CsOH) stretching

1042 CsO (CsOH) stretching
CsO (CsOH) stretching

1110 CdO of ketones stretching/bending
CsO (CsOsC) bond stretching/bending

1259 CsO (CsOH) stretching
1327 OsH (CsOH) stretching/bending
1419 OsH (CsOH groups) stretching/bending

CsH alkenes
2929 CsH (carbohydrate) stretching

OsH (carboxylic acids) stretching
NH3

+ (free amino acids) stretching
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based surface acoustic wave sensor (SAW) with an uncoated piezo-
electric quartz crystal that vibrates at a fundamental frequency. The
crystal is in contact with the thermoelectric element, which controls
the temperature for cooling during vapor adsorption and for heating
during cleaning and operates by maintaining a highly focused and
resonant surface acoustic wave at 500 MHz on its surface. Upon
adsorption of the mass, the frequency of the surface acoustic wave will
change in proportion to the adsorbant (35).

For z-Nose measurements, 8 g of honey was transferred into a 40
mL vial (98 mm length and 28 mm o.d.) and sealed with a screw cap
containing a septum. The vials were then transferred to a water bath at
50 °C for 120 min to ensure that all of the sugar crystals were melted
and to allow the aroma to equilibrate within the headspace of the vial
for a minimum of 2 h. To prevent any leakage during this equilibration
period, the screw cap with septum was covered with an extra plastic
cap. An analysis temperature of 50°C was chosen after the initial
experiments, whereby the profiles of the pure honey samples were
compared over five repetitions at room temperature and 50 and 70°C.
At room temperature the profiles were less concentrated and more
sensitive to changes in ambient temperature. At 70°C the profiles were
very intense but more susceptible to noise, possibly due to reactions
occurring in the honey at high temperature. At 50°C the profiles were
eventually both intense and stable and equilibration of the headspace
was relatively fast. After equilibration, the samples were measured one
by one with the z-Nose. The z-Nose consists of a 5 cm needle at the
inlet, which was used for sampling through the septa of the vials. The
sampling mode was set to 5 s, after which the system switched to a 10
s data acquisition mode. During this time period the gas sample was
released from the trap inside the system and carried over the column
(DB-5) by a helium flow of 3.00 cm3/s. The different chemical
components in the gas sample were separated on the basis of their
molecular weights and sequentially detected by the SAW detector
through their frequency shift; the data were collected every 0.02 s. The
inlet temperature was 150°C, the valve temperature was 120°C, and
the initial column temperature was 70°C. During analysis the column
temperature was ramped at the rate of 10°C/s to a final column
temperature of 100°C. The SAW sensor was operated at a temperature
of 40 °C. After each data sampling period, the system needed a 15 s
baking period, in which the sensor was shortly heated to 125°C and
after which the temperature conditions of the inlet, column, and sensor
were reset to their initial conditions. Between each sample measurement
at least one blank was run to ensure proper cleaning of the system and
a stable baseline.

Discriminant Analysis. Discriminant analysis is a procedure used
to classify unknown samples into groups based on similarities to the
characteristics of the training group (36). In this study all FTIR spectra
in the region from 900 to 3600 cm-1 were exported from the WIN-IR
Pro software (Bio-Rad), and the z-Nose data in the full range of time
from 1 to 10 s were exported from the Micro sense software (Electronic
Sensor Technology, Newbury Park, CA) as a “txt” file and imported
directly into the WIN-DAS (Wiley, Chichester, U.K.) software for
discriminant analysis. To develop the discriminant calibration model,
honey samples were classified into seven groups to represent the
respective clover (SD), buckwheat (MO), basswood (NY), wildflower
(PA), orange blossom (CA), carrot (LA), and alfalfa (CA) sources

(Table 2). Principal component analysis (PCA) and canonical variate
analysis (CVA) were used to develop discriminant models.

Principal Component Analysis.PCA is a very popular and powerful
technique for the identification, classification, and other aspects of data
evaluation. PCA decomposes the original matrix into several products
of multiplication corresponding to the loadings and scores that indicate
the variation of the data as well as the degree of fit. In this study PCA
was performed in the spectral ranges between 900 and 1500 cm-1 and
between 2200 and 3600 cm-1 to obtain a correct classification (Table
4).

The discriminant analysis procedure consists of three steps. In the
first step, the spectral data were subjected to principal component (PC)
data compression. In the second step, each spectrum is reconstructed
by a linear combination of the product of PC scores and their weights
(loading). In the third step, the PC scores are used for multiple group
classification. The PC scores were then used in CVA.

Canonical Variate Analysis.The second method used for discrimi-
nating between groups of observations is the CVA. Canonical variate
scores have successively maximized between-group variance/within-
group variance, and the CV loadings are obtained as eigenvectors of a
matrix given by

whereW is the within-group covariance matrix andB is the between-
group covariance matrix (37). The objective of this procedure is to
minimize the within-group variance and maximize the between-group
variance. The goodness of fit is indicated by the percentage of correct
classification. Discriminant models were based on the calibration data
and evaluated separately using the validation data set. The correctly
classified samples are expressed as a percentage of the total number of
samples in the specific groups. A schematic of the discriminant analysis
procedure is given inFigure 1. The spectra were normalized by dividing
the intensity values corresponding to each wavenumber in the spectrum
by its standard deviation before analysis.

Table 4. Discriminant Analysis of the FTIR Spectra of Honey Using PCA−CVA

classification (%)

calibration validatio validation

analysis
method

analysis region
(FTIR and z-Nose)

no. of
factors

total no. of
samples

classification
accuracy (%)

total no. of
samples

classification
accuracy (%)

FTIR PCA 950−1500 cm-1 7 350 100 140 100
6 99 98

FTIR PCA 2200−3200 cm-1 7 350 98 140 96.2
6 97 97.3

z-Nose PCA 1−10 s 7 350 100 140 100
(full chromatogram) 6 99 100

Figure 1. Schematic of the discriminant analysis procedure.

[W - 1][B]

Floral Classification of Honey J. Agric. Food Chem., Vol. 53, No. 18, 2005 6957



6958 J. Agric. Food Chem., Vol. 53, No. 18, 2005 Tewari and Irudayaraj



Data preparation methods adopted for z-Nose data prior to PCA and
CVA were slightly different; however, the entire spectrum of z-Nose
within the first 10 s was used for improved classification. Because the
z-Nose data can be looked upon as a chromatograph due to of its
relevance to GC-based sensing and also as spectra primarily because
of the signal from a sensor, two different data preparation methods
could be pursued (34). In the GC-based data analysis approach,
comparison of different peaks and peak areas was attempted. This was
possible through the software of the instrument, which automatically
transforms the frequency profile read from the SAW sensor to its first
derivative. When only the positive values of this first derivative plot
were considered, a chromatogram, which is similar to a regular GC
chromatogram, resulted (Figure 2A,B). Each peak found in this plot
corresponds to a specific volatile compound and retention time specific
to the column and analysis temperature. The area under the peak was
correlated to the compound concentration and was expressed in counts
(cts). Relative peak areas were calculated as the absolute peak area (in
counts) of each peak divided by the sum of all peak areas. When a
peak was not present in a certain chromatogram, its relative area was
set to zero.

In a spectroscopic data interpretation approach, the first-derivative
profile (positive and negative values) was considered and treated as
spectral data (Figure 3). In this case the full frequency spectrum of
every sample was analyzed. Vertical baseline shifts in the frequency
profiles were automatically filtered out by taking the first derivative.
Next to the vertical shifts the horizontal shifts are a very common
phenomenon in all types of chromatography. Small fluctuations in the
injection time and operational variability can cause the different volatile
components to be released and detected at slightly different retention
times or within a “time window”. In normal chromatographic analysis
this is not a major hurdle because only a limited number of selected
peaks are compared, each within its own window. However, when the
full spectra are compared, this shift leads to misinterpretation, because
a relevant peak could be compared with noise when the two spectra
are not perfectly aligned. To correct for the time shifts along the
horizontal axis, an algorithm developed and applied in one of our
previous studies (34) using MATLAB version 6.1 (Mathworks, Inc.)
was adopted. Hence the corrected frequency versus time spectrum with
respect to a chosen reference spectra is given by

wheretnew,i is the new corrected time assigned to theith data point in
the z-Nose spectra,told,i is the originalx-coordinate (i.e., time) for the
ith frequency reading, anda-c are the regression coefficients applied

to transform the old time value into a new value. Fora ) 0, b ) 1,
andc ) 0, a horizontal shift correction is 0. Fora ) 1, b ) 1, andc
) 0, the spectrum shifts over a constant valuea. For a positive and
negative value ofa, the shift occurs to the right or left, respectively.
This approach was found to work satisfactorily in a z-Nose approach
to detect adulteration in honey.

For data analysis in this study, a spectrum of buckwheat honey was
selected as a reference spectrum because buckwheat is the product with
the most complex aroma profile. On the basis of this reference, the
remaining spectra were shifted horizontally to provide the best overlap
with this reference spectrum. The three parameters (a-c) were adjusted
manually to shift and stretch the spectra linearly or nonlinearly,
depending on the alignment of a known frequency (or frequencies) with
the reference spectrum. The spectra thus obtained are ready for further
statistical analysis.

Figure 2. Original z-Nose chromatogram of honey from seven (buckwheat, clover, basswood, wildflower, orange blossom, carrot, and alfalfa) different
floral sources.

tnew,i ) a + btold,i + ctold,i

Figure 3. Baseline and time shift corrected z-Nose spectra of honey with
buckwheat honey spectrum as reference.
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Artificial Neural Network Analysis. Baseline-corrected and area-
normalized FTIR spectra of honey were converted as a txt file in
“wavenumber versus absorbance” format. Similarly baseline-corrected
z-Nose data were also converted as a txt file in “time versus area”
format. The corrected data sets of FTIR and z-Nose were then used
for neural network analysis for classification and floral similarities
between seven different floral honey samples.

Three types of ANN were applied: a quick back-propagation network
(BPN), a radial basis function network (RBFN), and a probabilistic
neural network (PNN). All 350 honey samples were used for BPN,
RBFN, and PNN to obtain the best classification network. BPN and
RBFN were developed using the ANN tool box of Matlab 6.5 (Matlab,
2003), and PNN was computed using the neural net software from Ward
Systems Group, Inc. (Baltimore, MD).

BPN is the most commonly used model, and RBFN is a type of
neural network used for classification analysis (10). A three-layer [input
(i), hidden (j), and output layer (k)] feed-forward network was used.
The intensity at specific frequencies in the form of anith-dimensional
vector was used as input. For the BPN and RBFN methods the spectral
region from 900 to 1500 cm-1 corresponding to the vibrational modes
of most carbohydrates was used. For the PNN method the spectral range
from 900 to 2200 cm-1, which includes the vibrational modes due to
carbohydrates, organic acids, amino acids, and other components of
honey, was used. The calculations for the number of neurons were

automatically done by the software according to the size of the data.
The main intent is to assess the variation based upon the components
of honey.

The region between 900 and 1500 cm-1 contains 46 data points
representing intensities at various frequencies in this region. Thus, there
are 46 neurons in the input layer of the network. The number of hidden
neurons was optimized on a trial basis. The output layer consists of
seven neurons representing the seven honey types based on floral origin.
If the assignment due to ANN is correct, the output corresponding to
the assignment group is set to 1 and the other outputs are set to 0.
Before training, all weights were randomly chosen to be in the range
from -0.5 to 1. A learning cycle (epoch) during which all of the training
patterns are presented randomly to the network was used. The
performance of the ANNs used in this study was tested with a validation
set and monitored during the learning session to determine the
terminating phase of the network so as to prevent overtraining.
Overtraining occurs when an ANN is trained with an excessive number
of learning epochs and thus loses its capacity to identify unknown
patterns.

Quick BPN adopted two strategies of momentum and self-adaptation
adjustment of learning rate to increase the learning rate and the
reliability of the BP network. The activation function of all neurons
was sigmoidal, a logistic function described byæ(υ) ) 1/1 + e-aυ,
whereυ is the output signal of neurons, and the slope a is set to 1.0.
The parameters chosen for BPN included a learning rate (lr)η ) 0.02,

Figure 4. FTIR spectra of honey from seven different floral sources.
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a momentum constant (mc)) 0.9, and increase learning ratio (lir))
1.05, a decrease learning ratio (ldr)) 0.7, and a maximum error ratio
of 1.04.

PNN was also deigned for classification and to assess similarities
between different floral honeys. Results from this network could be
used to classify honey with similar compositional characteristics. This
method is highly useful to identify the similarities between the floral
honeys.

RESULTS AND DISCUSSION

Characterization of Honey by FTIR Spectroscopy.The
numerous molecular motions of most polyatomic molecules
afford a unique set of multiple and overlapping absorption bands

in the fingerprint region of the infrared spectrum below 1500
cm-1 wavenumbers.Figure 4 shows the overlay spectra (600-
3800 cm-1) of clover (SD), buckwheat (MO), basswood (NY),
wildflower (PA), orange blossom (CA), carrot (LA), and alfalfa
(CA) honey samples. The spectral region between 750 and 1500
cm-1 corresponds to the absorption region of monosaccharides
such as glucose and fructose and disaccharides such as sucrose.
The region of 750-900 cm-1 corresponds to the anomeric
region characteristic of the saccharide configuration (38). The
bands in the 904-1153 cm-1 region are assigned to C-O and
C-C stretching modes (39), and those around 1199-1474 cm-1

are due to the bending modes of O-C-H, C-C-H, and
C-O-H. Negative bands observed around 1618 and 3635 cm-1

Figure 5. FTIR spectroscopy based classification of honey using PCA−
CVA.

Table 5. Neural Network Analysis Using the Quick BPN Approacha

calibration sample set validation sample set

neuron no. of
hidden layer

optimum
training
epochs

right assign-
ment no.

wrong assign-
ment no.

classified
correctly (%)

right assign-
ment no.

wrong assign-
ment no.

classified
correctly (%)

10 5000 240 10 68.57 96 44 68.57
20 15000 265 85 75.71 114 26 81.42
40 22000 328 22 93.71 135 5 96.42
60 28000 315 35 90 122 18 87.14

a Learning rate (lr) η ) 0.02; momentum constant (mc) ) 0.9; learning increase ratio (lir) ) 1.05; learning decrease ratio (ldr) ) 0.7; maximum error ratio ) 1.04.

Table 6. Neural Network Analysis Using RBFN

calibration sample set validation sample set

group
right assign-

ment no.
wrong assign-

ment no.
classified

correctly (%)
right assign-

ment no.
wrong assign-

ment no.
classified

correctly (%)

1 50 0 100 20 0 100
2 50 0 100 12 8 60
3 50 0 100 16 4 80
4 50 0 100 20 0 100
5 50 0 100 20 0 100
6 50 0 100 19 1 95
7 50 0 100 20 0 100

overall results 81 0 100 35 3 95.72

Figure 6. Validation of the calibrated PCA−CVA model with unknown
samples.
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are due to lower water concentration in honey compared to the
reference, because water presents an O-H stretch at these
regions (40). The broad, strong NH3+ stretch in the 2600-3100
cm-1 region can be related to primary amino acids, which are
present in honey at very low concentrations (41).

Table 3presents the bands and functional group assignments
along with the corresponding modes of vibrations in the FTIR
spectrum of honey. The 927 cm-1 peak may be due to the C-H
bending of carbohydrate, whereas the peaks observed at 991,
1042, 1106, and 1259 cm-1 may be due to the C-O stretch in
the C-OH group as well as the C-C stretch in the carbohydrate
structure. The peak at 1110 cm-1 could be related to the
stretching of the C-O bond of the C-O-C linkage. The
C-O-C is present here in sucrose as a glycosidic bond, a band
linking monosaccharides such as glucose and fructose. The peak
around 1327 cm-1 may be due to O-H bending of the C-OH
group, and the band at 1419 cm-1 may be due to a combination
of O-H bending of the C-O-H group and C-H bending of
alkenes. The structure of organic acids such as fumaric acid
has a CHdC bond, which may contribute to the peak at 1419
(42). The peak at 2929 cm-1 could denote the C-H stretching
of carboxylic acids and NH3+ of free amino acids. Hence, the
region from 800 to 1200 cm-1 could be characterized as the
carbohydrate region, whereas the 1200-1800 and 2800-3200
cm-1 regions would indicate absorption due to organic and
amino acids.

Classification of Floral Honey Based on Carbohydrate and
Organic and Amino Acid Patterns from the FTIR Spectra.
Chemometric models for the discrimination of honey based on
floral origin are listed inTable 3. Table 4 shows the classifica-
tion results by data compression using PCA and discrimination
using CVA (i.e. PCA-CVA). As stated earlier, regions from
950 to 1500 cm-1 and from 2200 to 3200 cm-1 represent the
carbohydrate, organic acids, amino acids, and vitamins in honey
that correspond to specific constituents such as glucose, fructose,
sucrose, maltose, gluconic acid, citric acid, lactic acid, fumaric
acid, succinic acid, malic acids, thiamin, riboflavin, niacin,
pyridoxine (vitamin B6), ascorbic acid (vitamin C),L-cystine,
dimethylxanthine, and acetylcholine. Classification of honey
from different sources using discriminant analysis is based on
similarity of the characteristics of members in a cluster (36).
The analysis pursued contained 50 data points (each data point
denotes a spectrum) for each floral source, but from different
locations. Two regions in the mid-infrared range, 950-1500
and 2200-2300 cm-1, were used for calibration and validation.
Figures 5 and 6 present the respective PCA-CVA plots for
calibration and validation based on the FTIR spectra.Figure 5
presents the 96% confidence elliptical cluster of the different
floral honeys using WINDAS. Their centers can be calculated
from the means of the group coordinates, and their axes
represent the values of the confidence regions for each dimen-
sion calculated by multiple regression. Well-separated groups

Figure 7. PNN for classification of honey based on FTIR spectra [(A) calibration set; (B) prediction set].
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for all of the different floral honey can be observed from the
CVA plot. Figure 6 shows an excellent prediction of the
unknown honey using the developed calibration model. FTIR
results of the seven different types of honey show that the
developed model could classify the floral honeys to nearly 100%
accuracy.

FTIR spectra using information from the 950-1500 cm-1

region resulted in a 100% correct classification in the calibration
set with seven PCA scores, and a 99% correct classification
was achieved using six PCA scores. When the region of 2200-
3200 cm-1 in the FTIR spectra was used, a 98% correct
classification was achieved with seven PCA factors. Validation
of the calibrated models using 20 spectra for each floral honey
considered gave consistent prediction accuracies in the range
between 97 and 100% as shown inTable 4.

Classification of Honey Using FTIR Spectra by Artificial
Neural Networks. Neural networks look for patterns in the
training data sets and learn to make accurate forecasts and
predictions. The training data contain several sets of input
variables corresponding to its output. The inputs are often called
independent variables, and the output (classification) is called
the dependent variable. Each set of the corresponding indepen-
dent variables and dependent variable is called an observation
or example. Examples in the training data should include a
representative set of the problems likely to be encountered in
real honey samples (43).

Table 5shows the overall results for sample sets using quick
BPN. As the number of neurons in the hidden layer increased,
especially in the beginning stages, the assignment success rates
also increased. When the number of neurons reached 60, the
assignment success rates began to decrease. It was also shown
that the greater the number of neurons in the hidden layer, the
longer the training epochs. For the quick BPN, the optimum
neuron numbers in the hidden layer and epochs were 40 and
22000, respectively. Using this approach, the final optimum
architecture of BPN was 46-40-3, and the assignment success
rate using BPN was 93.75% for both the calibration and
validation sets.Table 6 shows the overall results for sample

sets using RBFN. For RBFN, the network automatically
accounted for the number of neurons in the hidden layer to meet
the training targets based on the training set. The final
assignment success rates of RBFN were 100 and 95.72% for
the calibration and validation sets, respectively. Although the
RBFN’s fit to the training data was 100%, the capacity to
identify unknown patterns was not as high, possibly due to
overtraining. Another probable reason could be the overlap
between groups and the sensitivity and specificity of the sensor
itself.

The PNN analysis used all of the 350 honey samples. Using
an appropriate number of hidden neurons, the network classified
all of the honey types with nearly 100% accuracy.Figure 7A
shows the classification plots of the seven floral types of honey
using PNN. The probability graph displays the prediction of
the network for each selected honey types as a bar chart. The
bar chart depicts the probability that a given set of inputs will
lead to a correct classification in each of the output categories
with the probability values at the output categories adding up
to 1. The PNN study can be very useful for the identification
of similarities of the floral honeys. Hence, when two output
categories have probabilities that are fairly close, for example,
with values such as 0.98 and 0.97, the implication is that the
network did not have enough information to make an unequivo-
cal classification; hence, additional inputs to the network were
considered to obtain a better discriminatory model.Figures 7
and 10 show that it is possible to classify honeys that have
similar characteristics using the PNN. Thus, FTIR fingerprints
could serve as a rapid means to identify honeys that have similar
characteristics based on their carbohydrates as well as their
amino acids, enzymes, and volatile and nonvolatile constituent
contents. A separate set containing 20 independent samples from
the honey types considered were used as a test set to further
validate the PNN models.Figure 7B shows that the PNN
models are validated with very high accuracy using the unknown
sample set.

Figure 8. Classification of floral honey using z-Nose (calibration set) with
PCA−CVA.

Figure 9. Validation of the calibrated PCA−CVA model using the corrected
z-Nose spectra with unknown honey samples.
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Classification of Honey Using z-Nose Data by Multivariate
Data Analysis. Figure 2A,B presents the original z-Nose
chromatogram of the different types of honey. It has been clearly
shown that a distinct chromatogram can be obtained for the
different honeys due to their qualitative and quantitative
differences in volatile components. The data analysis procedure
is similar to FTIR classification except that the z-Nose data with
all of the peaks were used. Fifty chromatograms for each floral
honey were used to develop the calibration model. Hence, for
the seven different floral honey types a total of 350 z-Nose
chromatograms were used.Table 4 presents the results of the
statistical analysis using the z-Nose data including the calibration
and validation accuracy along with the number of factors. In
the chromatogram approach, the 12 most abundant honey
volatiles were selected and used as variables in the discriminant
analysis. PCA was used to reduce and compress the z-Nose
data before CVA could be used.

The calibration model was successfully used to classify
unknown honey samples up to an accuracy of 100% using six
PCA factors and up to 99% accuracy using seven PCA factors
(Table 4). Figure 8 presents the classification of seven types
of floral honey using the calibration model with excellent
accuracy. In a two-dimensional canonical variate plot, all honeys
can be visually discriminated. A nearly 100% classification
accuracy was achieved using the z-Nose calibration set. A
validation accuracy of 100% was achieved using the z-Nose
data. Similar to the FTIR analysis, the validation set for z-Nose
analysis consisted of 20 samples for each floral honey and is

presented inFigure 9. Upon comparison, the z-Nose (Figure
9) predictions were better than the FTIR predictions (Figure
6).

Classification of Honey by z-Nose Data Using Probabilistic
Neural Networks. Baseline-corrected chromatograms of all 350
samples were used to build PNN models.Figure 10A illustrates
the probabilistic classification of seven types of honey using
z-Nose. All 350 samples were clearly discriminated, and the
classification accuracy of this model was 100%. An independent
set of 20 samples for each floral honey also resulted in a nearly
100% prediction accuracy (Figure 10B) using the developed
PNN model.

FTIR spectroscopy and z-Nose methods were successfully
used to classify honeys from seven different floral sources
[clover (SD), buckwheat (MO), basswood (NY), wildflower
(PA), orange blossom (CA), carrot (LA), and alfalfa (CA)].
Chemometric and ANN models developed using FTIR and
z-Nose yieldedR2 values>0.98. Fingerprints of honey from
seven floral sources were sufficiently specific to discriminate
on the basis of their nonvolatile as well as aroma composition.
The z-Nose approach in conjunction with PCA-CVA and ANN
using a chromatogram approach with relative peak areas or a
spectral approach following a time-dependent peak identification
process could be successfully used for honey authenticity
studies. A key advantage of the z-Nose approach is that it is
portable; however, suitable data correction procedures were
necessary beyond the standard baseline and intensity normaliza-
tion. Honey quality sensing could be further improved if the
volatile constituent information from z-Nose and nonvolatile

Figure 10. PNN for classification of honey based on the corrected z-Nose data [(A) calibration set; (B) prediction set].
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constituent information from FTIR spectroscopy could be used
to provide complementary information.
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